CORDWOOD SHED PLANS

Build a Practice Building
Learn the Cordwood Technique
Create valuable storage space

Richard Flatau
Cordwood Pole Buildings & other Sheds

'Gimme Shelter'

by Richard Flatau

The most important thing you can do before building your cordwood castle is to build yourself a cordwood practice building. This experience will provide you with:

- Invaluable cordwood masonry experience.
- A unique, one-of-a-kind storage building.
- Mistakes that won't be repeated on your home.

My pole shed inspiration came after marveling at the simplicity and ease with which a conventional pole shed is built. The need for a pole building came because I was organizing a cordwood seminar and wanted each participant to have a "hands on" experience. So I decided to erect a pole building framework, divide the rectangles into 4' X 4' sections and have each person "mud-up" his/her own wall. This worked so well that not only did the course participants come away with a solid cordwood experience, but my family came away with 4 good-looking, functional pole sheds (a la Tom Sawyer).

Each pole shed was 12' X 16'. For our scale/needs this became an optimal size for many reasons: all the lumber could be purchased in 8', 12' and 16' lengths; the roof trusses could be the "king post" type (which are simple to build and span a maximum of 16'); and each shed became a mini-garage for: a tractor, a boat, a play house, a "safe" archery lane, a rototiller, garden supplies, "junque," etc.

The pole sheds bottom line cost was less than one dollar @ square foot and the only material that wasn't brand new was the metal roofing, which was left-overs, purchased from local pole builders. (Note: This was in 1980's, so the dollar cost is now certainly more.)
To construct a pole shed, barn, garage, out-house, etc. one needs to keep a few points in mind:

- Poles should be 12’, 4’ x 4’ s (square) pressure treated for below ground use (.60 retention). **Note:** There are pressure treated poles that are not treated with arsenic.
- Maximum span for a 4” x 4” post is 8 feet.
- Top plates must be 2” x 6” s, placed horizontally.
- Trusses are easily hand made. (See diagram).
- Metal roofing is very simple to apply (and over runs are half of what new material costs.)
- The 4” x 4” posts must go below the frost line.
- Gravel or crushed rock must be tamped around the posts to keep water from freezing and heaving the post.
- A pressure-treated, horizontal "Cordwood Ladder Pad" filled with gravel or concrete is what supports the cordwood.

Note: the cordwood is finished half-way up on the right and is drying in the pole shed on the left.

THE FRAMEWORK:

The beauty of pole building is that the poles become the foundation and the frame. Start by figuring your space requirements. This article will deal with a 12’ x 16’ frame work, but you can expand or shrink the dimensions "as needed." Remember, the 8’ maximum span between posts.

Go at least 6” below the frost line so that a concrete "punch pad" or rocks or gravel can be placed below the post to eliminate heaving by moving water away from the pole. Tamp the gravel and rock as you backfill around the pole. Some experts use concrete to fill the hole, but I've found that the concrete draws water to the pole and hastens its demise. Once the cordwood is "layed up" there is little pole movement.
Level the poles as you tamp them with a good 4' mason’s level. Brace the poles after you attain a level reading on all 4 sides. When all 7 poles are in place, nail the 2'' X 6'' top plates on, level them and then check the hypotenuse. Push and pull and tamp until everything is level (or close to it), remember these buildings are not rocket science. The following diagram shows a top view of a 12' X 16' shed.
Level the surface and dig the 7 holes. A hand post hole digger works well in most soils. The pole shed structure in place. The ladder pads are easy to understand by carefully observing the photo and the diagrams.

Two finished pole sheds with a center storage area. The metal roofing was “left-overs.”
The following diagram shows how the post looks from a side view:

Note that the outside 4 X 4 is the only one that goes below grade. The adjacent 4 X 4 is simply scabbed on to provide "width" for the cordwood infilling. The cordwood ladder pad is best when used with concrete. When using concrete, place' l 7/8" galvanized roofing nails along the inside perimeter for concrete adhesion. See the end of this document for a new method of constructing Pole Shed posts.
After the top 2" X 6" are in place cut off the excess 4" X 4". Keep your corner bracing or place diagonals between the poles to keep things square. If you don't plan to "mud up" the walls for a while you can put on the roof and dry your cordwood on the "cordwood ladder pad."

CORDWOOD LADDER PAD

The cordwood ladder pad, the foundation on which the cordwood rests, is perhaps the most innovative part of the pole shed. The following top-view drawing shows the details:

The roof may be added before (or after) the cordwood infilling. If you add it before, be sure to brace the framework to keep everything level and plumb. When using a truss roof, remember that a King Post Truss spans a maximum of 16' and
had a center support. Gang nails or plywood gussets should be used at each joint.

Prefabricated W trusses span 20' plus. However trusses are easily made once you have a sample to use as a template. Contact your local building center for specifications on span length and snow load.

ROOFING Any type of commonly available material may be used to cover the roof. Metal is perhaps the easiest to apply, but plywood, oriented strand board, shingles, rolled roofing, etc. are all possibilities.

WINDOW & DOOR OPENINGS Before laying up the cordwood determine where you want doors and windows. Create your door jams and window frames by simply framing them using the existing bottom and top plates as guides. Also run all your electrical wiring (using 12-2 UF underground wire) inside the walls and set your outlet and switch boxes. If your shed is going to be liveable add strips of fiberglass insulation along the poles to prevent air infiltration. If you want a wooden floor, lay pressure treated 2 x 4's, on end and then cover the floor with plywood or boards.

MUDDING UP THE WALLS Your cordwood for this type of shed will be cut 10'' to 12'' in length and split, de-barked and dried for one full year. Use the book *Cordwood Construction: Best Practices*, for details on the basics of laying up a wall.(see ordering page)

My favorite recipe for cordwood masonry (non-load bearing walls)

3 parts sand
2 parts soaked sawdust
1 part Portland cement
1 part Hydrated Lime
Mortaring at the Cordwood Education Center

Mortaring Tips:

This mortar mix is used to make a thick mortar that withstands the "snowball test." You should be able to make a snowball of the mortar, throw it 2-3 feet in the air and catch it without having it break apart. A 3 inch bead of mortar is laid on the inside and outside of the log. The middle cavity is then insulated with sawdust mixed with lime. Then water is added, a little at a time, until a thick “mud” is produced. The signature test for mortar is the snowball toss. The mortar is made into a snowball shape and gently tossed into the air (3’). If it holds together and doesn’t break apart it is A-ok. If however, it breaks apart, it is too dry and needs more water. Add the water slowly because it is easy to add too much and get a soupy mix. If the snowball oozes out of your hands, then the mortar mix is too wet and you must add dry ingredients (in their same proportions) back into the mix to get it just right. Once the mortar is the right consistency it is laid down just like the pictures show: Two 3” mortar beads: one on the outside, one on the inside. The center cavity is filled with sawdust mixed with hydrated lime in a 9 to 1 ratio. This is packed in tight to avoid settling. Next the log ends are placed into the mortar matrix and lightly squished into the mortar. A one inch mortar joint is maintained between the log ends. Sometimes a piece of wood will need to be cut with a hatchet to fill a small gap and maintain a 1” mortar joint. It is difficult to actually keep an exact one inch joint, there will be some natural variation. As the wall rises to two or three rows, a “rough” tuck pointing takes place. The mortar is firmed around each log end and smoothed with the hand to eliminate bulges and fingerprints. A final tuck pointing is done with a spoon, bent butter knife or karate chop portion of the hand, after an hour or so. The tuck pointing actually strengthens the mortar and eliminates any gaps. The wall should be built with log ends inserted as a random pattern. Large, small, split and round make up the best looking wall. Patterns, shelves, and bottle ends must be planned ahead of time. It is a good idea to step back from the wall from time to time to make certain that one is not placing all log ends of the same diameter in the wall. A ‘polka dot’ wall results from using all wood of the same size. A good way to keep the wall level and plumb is to use a straight 2” x 4”, a plumb bob, or a 4’ or 6’ level. Don Gerdes of Reedsburg, Wisconsin came up with the idea of placing a swinging 1” x 4” board from the top plate. This 1” x 4” can then be “swung” from side to side as the wall is being built. This will help maintain level and plumb walls. The mortar must be protected from the sun. It must be covered at the end of the day with blankets, plastic or tarps and secured to the surrounding posts. This helps to slow the set of the mortar and eliminate mortar cracking on cordwood.
Suffice it to say that the cordwood pole shed, barn, garage, doghouse, etc. is the best starting point for the "wood be" cordwood builder. So get off the couch, pull on your work gloves, start your chainsaw and "Go Do It!"

NOTE: The author would like to make the reader aware that when clearing the ground for the cordwood pole shed all of the top-soil (organic matter) must be removed, the ladder pad needs to sit on tamped gravel with only subsoil beneath. This is done to ensure that the poles won't move and crack your mortar joints. Also the vertical poles MUST reach below the frost line and stones or tamped gravel needs to be placed under the pole. This will also assure that your wall doesn't move. A third precaution is to tamp the gravel around the pole as you make it "level and plumb" This lets the water drain a way from the poles

Remember: These sheds are not meant to be used for dwellings. They should be considered for storage and shelter for machinery

Disclaimer: The author has given an honest accounting of building a cordwood pole shed. Since there are many factors which affect building a cordwood shed: climate, water properties, proper mortar mixes, indigenous wood species, soils and sub-soils, etc., the author disclaims any responsibility for problems which may arise during and after construction.
KING-POST TRUSS

This truss will span a maximum of 16 feet and can be made of 2x4 materials. 1/2" plywood gussets or gang nail plates should be used at each "lumber joining" point.

THE "W" TRUSS

The "W" Truss is capable of spanning 15'-34'. It can be used for homes or cottages or sheds. These trusses may be self-made or store bought. You may want to buy one and use it as a pattern for the others. I have found it easiest to nail the truss I'm making to my pattern truss with double-headed nails. Then I remove the nails when finished. This way every truss is exactly the same size.
Cordwood Sheds

These sheds are an economical way to build storage space and learn the cordwood masonry technique. The sheds were very economical to build (this is considering the use of seconds for roofing metal and the fact that the cordwood came from my own property). The main cost of the sheds comes from the framing lumber and the Portland cement and hydrated lime. The more you spend on these the more your building will cost. Below is a picture of sheds finished with aspen, cedar and tamarack. They have been standing since 1985 and are in good shape.

Just remember: **The storage space you build, is all too easily filled.**

Chuck Hine's wood drying cordwood shed in Calumet, Michigan.
A new innovation in how to construct a pole shed

The Novitch shed was built using:

1. Two, pressure-treated, twelve foot, 2” x 10”s glued and deck screwed together to make the posts. (Total of 14 pressure-treated 2” x 10”s.) These posts are placed in post-holes below the frost line. (See page 5 & page 19.)

2. The ladder pad was made with pressure treated 2” x 6”s, which were screwed to the posts. (Total of four pressure-treated 16 foot 2 x 6’s and two 12 foot 2 x 6’s.)

3. The subsoil under the ladder pad was tamped, filled with gravel and tamped again.

4. The ladder pad does not go below the frost line, but rests on the tamped gravel. See page 19 for a diagram of the ladder pad resting on the tamped ground.

5. The inside of the ladder pad had seven, 2” deck screws drilled half way in. This was to make sure the concrete would grab and hold. The ladder pad rungs are made with scraps of pressure-treated lumber.

6. The cordwood log ends will be 12” in length ($9\frac{1}{4} + 1.5 + 1.5 = 12”$)
Keying the mortar

Keeping the mortar matrix locked in.

Two 1” x 2” pieces of wood (note the two gray vertical strips of wood) were screwed 1” in, to the inside of the posts. This is an effective keying method to make certain that the mortar grabs the keyway and locks itself to the post. This method was developed in seismic regions of the country and is a simple and effective practice wherever a post and beam framework is used.

Note the keyways on the window boxes to the left of the posts.

(This picture is from the Merrill School Forest Cordwood Educational Center.)
Put the roof on first

(For safety sake, brace and cross brace your building well, if you put the roof on first).

If you are able, put the roof on first.

Notice the bracing that was used to keep the building level and plumb. It can’t be emphasized enough to use a 4’ level to keep everything square while you are building the framework.

By putting the roof on first you can:

1. Store your materials out of the elements.
2. Have a weather resistant place to mortar.
3. Keep your mortar/log ends dry and (at times) out of the drying effects of the sun.
A close up of the two pressure-treated, non-arsenic, 2” x 10”’s that were glued (construction adhesive) and deck screwed together. The 2” x 6” ladder pad is resting directly on the ground.

This means your cordwood log ends can be 12” in length (9 ¼ + 1.5 + 1.5 = 12”)

This photo also shows the center post at the back of the shed perpendicular to the other 6 posts. The cordwood is infilled along the long “runs” first and the width “runs” last. That way the cordwood infill will lock each wall in.

The gravel has been shoveled in and tamped in the foreground. In the background the concrete is setting up in the ladder pad.

The concrete is a simple mixture of Portland cement, sand and gravel. This is simply adding weight to the ladder pad.
Another Innovation

Here is a photo from Kurt & Barb Wilhelm in Boscobel, Wisconsin. They attended one of our workshops and decided to try the pole shed idea. They made theirs 20’ x 16’ (320 sq. ft.) The walls are 9’ high. It is large enough to be considered a 1 ½ car garage. The king post trusses are made with 2 x 6’s to span the 16’s width. There are only four of them and this means that there is no need for a gable end truss.

Kurt and Barb have also moved the post for the “front” door over a bit so they can attach an overhead garage door. The ladder pad foundation has tamped gravel in the ladder pads. You can see clearly in this picture how they have tamped the gravel so it flows to the outside.
More ideas!

Tom and Mary Barchacky of Green Bay, Wisconsin have opted for a garden cottage, work-shed with a recycled arched door and a nice large recycled window. They put one split faced block around the perimeter of the foundation to “lift” the cordwood off of “grade.” This will help prevent splashback and the subsequent weathering of the log ends. They erected old 8” x 8” barn beams for the corner posts which fit perfectly on top of the concrete blocks. Tom states, “most of the material used is in the garden cottage is ‘repurposed’ from alleys, curbs and donations from friends.”

The building is 16’ x 16’, relatively small, but very attractive. The 9/12 pitch trusses were hand built to be completely open to allow for a ton of storage in the attic. Tom said he soaked and bent two maple strips and attached them to the side door posts to build his arch…just like the Romans. Some of the cedar used in the building is recycled ‘Red Heart Cedar.’

To the right is a garden shed at Treehaven in Tomahawk, Wisconsin. It has Red Pine for both cordwood and the slab siding. It has the cordwood shed framing. Let’s see what innovations you discover. Please send your photos/jpegs when you are working and when you finish. You would be surprised how quickly you will inspire some other cordwood mason!
The Sugar Shack nears completion.

The Novitch Sugar Shack is buttoned up for the winter. The Hemlock doors make an attractive addition. The metal roof is helpful in snow country, as there is no need for raking the roof, the snow slides off.
(Flatau)

Note: It is of the utmost importance to scrape off the topsoil, put in tamped gravel where the ladder pads will be placed and place the poles below the frost line. Otherwise the ladder pad will move and the mortar will crack.

How about building a dog house or a garden shed as a practice building?
(Tom Huber)
Three More New Ideas

1. A Fine Example: The Chicken Castle

This is *The Chicken Castle*, a cordwood chicken coop built near Seattle, Washington by a fellow who calls himself "cementitious man" Go to cementitiouman.com to view his website. This is a simple round structure with no post support, but is it so small, that reaching the top to put on the roof should be quickly accomplished. Go to chickencastle.com to learn more about how this wonderful family built their coop. Here are a few tips from the author's article at backyardchicken.com

"Cordwood Construction is an old building technique utilizing wood and mortar. There are many books available on the subject and you should definitely read at least a couple of them before you would undertake this coop. But the process is relatively simple and straightforward. Wood is used in place of brick or stone and set in mortar. You can either use logs or split firewood that has been cured for at least two years, the longer the better. The wood is cut to the desired depth of your walls and left to cure. I cut the logs down to six inch slices or discs (the walls in a cordwood house would be at least 24" thick) and peeled off the bark. Cordwood construction is built on a concrete foundation. Once the foundation is cured its a matter of mixing mortar, and mixing mortar, and mixing mortar. The mortar is laid out on the foundation in a bed smaller than the width of the wood, the wood is then pressed into the mortar bed and then more mortar is placed around and over the log, repeat, repeat, repeat. Doors, window, vents and any other openings are simple wooden frames that are treated just like the logs and mortared in place as you walls progress. The framework for the roof is also mortared in place as you reach the top of your walls. That's it, wood and mortar, what could be easier. Ready, set, go."
2. A Cob and Cordwood example from Finland

For those of you who might be interested in experimenting with a cob and cordwood outbuilding. Here is an outstanding example by Heidi Vilkman of London, England. She owned some property in Finland and one summer decided to build her "Cob and Cordwood Dream Cottage." Although she is not yet finished, this cottage is artistic, beautiful and whimsical. It has many dream motifs embedded in the walls. Cob and cordwood is not a new idea and it is gaining popularity. Cob has relatively poor insulation qualities, so combining it with cordwood and an insulation-filled center cavity is helpful to increase R-value. However, until further research is complete (on wall longevity and maintenance) I would consider its use for outbuildings only.

Heidi's cob and cordwood cottage in Finland

To read more about Heidi's cob and cordwood cottage go to her blog:
www.cobdreamsblogspot.com This is the intro to her musings:

"This blog is about following my dream to build a small Eco dwelling in a forest in the South of Finland, by using only my bare hands, some friends' help, as little money as possible and only natural materials from the surrounding environment."
3. Olle Hagman's Writer's Cabin in Sweden

Olle built his Writer's cabin in Sweden in order to have a natural haven from the hustle and bustle of his job as a professor of sociology at Gotenburg University. He wrote two articles for the Cordwood Conference Papers 2011: A Social History of Cordwood Houses in Sweden and Norwegian Cordwood Wall Technique. Olle presented these papers at the Cordwood Conference at the University of Manitoba on June 12, 2011.

Olle built his cabin on four large corner stones that had been a barn foundation. The bottom sill logs are of 8" x 8" spruce. The cabin is small, in the tiny house tradition, only 9' x 9'. The walls are seven inches thick and made of barked and dried, Swedish white spruce. Olle tried various mortar mixes, but basically used a mix of 8 sand, 6 wet sawdust, 3 mortar cement and 2 lime. He also used some cob (clay, sand, straw) because this is the mortar that was used in the early Swedish cordwood homes which are called Kubbhus in Swedish. Chopped and slurried paper was also used with a mix of 1 mortar cement, 2 sand and two paper.

Olle is using the cabin for writing, but he is also building it to experiment with various construction ideas for the renewed interest in cordwood construction taking place in Sweden. Olle will be teaching workshops and seminars on how to build Kubbhus/cordwood.

Pole Shed Blueprints: The following pages are snapshots from blueprints that I helped develop and, as you will see, they re-emphasize the instructions that were explained in the previous pages.
INTRODUCTION

These building plans detail the construction of a simple cordwood pole barn, one of several that cordwood builder-teacher Richard Flatou erected with the help of his students over a three-year period. This type of structure was selected as a plan offering because it is the least expensive and easiest to re-create—important considerations for the novice or first-time builder.

The companion guide to this set of plans is Richard Flatou’s booklet entitled Cordwood Construction: A Log-End View, which describes the author’s personal experience in building his own 2,000-square-foot home with his family, and details all the important aspects of cordwood building, including foundations, wood selection, framing, mortar mixes, laying up, trusses and roofing, plumbing, heating, finishing and a good deal of other useful information on tools, history, financing, code compliance, thermal efficiency and additional access.

The use of cordwood as a construction material is an old technique that has seen revival and improvement in the past decade or so. In cordwood construction—also known as stackwall or log-end building—1” to 2” lengths of mostly split wood about 6” or 8” in diameter are stacked like firewood and mortared together with a mixture of cement, sand, lime and sawdust to form a wall. In an insulated structure, just the log ends are bonded, and the center gaps are filled with sawdust and lime, cellulose, polystyrene or fiberglass stuffing.

As in conventional construction, the walls are supported by a foundation, which can be either a concrete footing or slab, or one of several alternatives, including a bed of railroad ties or a pressure-treated pole foundation. The walls are normally built in sections, with vertical posts separating the sections and supporting the weight of the top plates and roof. The roof can be framed with rafters or trusses and covered with metal, sheathing and shingles or a number of panelized roofing materials.

Because of the great flexibility of cordwood construction and the fact that the technique is perfectly suited to the owner-builder, it’s a very inexpensive method of putting up just about any type of shelter.

BUILDING THE BASIC POST-AND-PLATE STRUCTURE

Begin by leveling an area slightly larger than the basic foundation or group of foundations to be constructed. Carefully stake out the 4 corners and determine the precise location of the 7 or 8 supporting posts. At each point, dig post holes down below the frost line and fill the bottom of each with a few inches of gravel or concrete. Next, nail the post pairs together, using 5” pole barn spikes (note that only the outer post of each pair extends below the earth surface). Set a post in each hole and temporarily brace them into plumb. Once the posts are propped in position, nail the pressure-treated 2 X 4s in place to form the ladder foundation (see foundation plan). After the ladder foundation is in place, attach the pressure-treated 2 X 6 top plates to the outside of the posts. Position these so that there’s an 8” distance between their top surface and that of the lower foundation. Recheck the frame for square and plumb, then backfill the posts. If you plan on adding a wooden floor to the building, nail in the additional pressure-treated 2 X 4 floor joists indicated on the foundation plan. Finish the basic structure by trimming any excess length from the posts, making them flush with the top edge of the upper plates.
LAYING UP THE WALLS

After the door and window frames are in place, the process of laying up the walls can begin. Start by filling the ladder foundation with either gravel or concrete. If gravel is to be used, excavate an additional 5" to 7" beneath the foundation. Fill the trench and foundation with coarse gravel, then rinse and tamp the resulting 10" rock bed. For a concrete foundation, the inside edges of the ladder form should be lined with 1½" galvanized roofing nails spaced 4' - 6' apart. The nails will act as gibs to prevent separation of the concrete and wood.

Next, run all electrical wiring for lights, switches, and receptacles along the inside edges of the wall cavity, using wire staples to hold it in place. Check your local building code to determine the type of wire required. If you are unaffected by codes, 12-gauge UF underground wire is a good choice because of its impermeable covering.

If you plan to heat the structure, you may want to add strips of batt insulation along the sides and base of the wall cavity. In addition, insulation can be added to the stackwood's center cavity as the walls go up (see "Laying Up a Wall," p. 78, for details). Finish off the project with a good floor by spreading a few inches of pea gravel. Or, if you added the additional floor joists, cover the joists with plywood, water board or 2X planking.

ADO POLYSTYRENE OR SAWDUST/SLIME INSULATION TO WALL CAVITY.

2X PLANKING OR PLYWOOD

GRATE FLOOR JOIST

BATT INSULATION

CONCRETE

1½" GALVANIZED ROOFING NAILS

FROST LINE
DOOR AND WINDOW PLACEMENT

With the roof complete, the next step toward getting dried-in is to determine the placement of any forthcoming doors and windows. Door jambs are created by nailing additional 4 X 4 uprights between the upper and lower plates. A horizontal 2 X 6 can be nailed behind the 2 X 6 top plate to finish the upper portion of the jamb. Stops can be added by nailing 1 X stock around the jamb's perimeter.

Window frames can be placed anywhere in the plate-and-pole structure either by setting them on horizontal sills or by hanging them from the backside of the top plate, as shown in the detail below.
TOPPING IT OFF

At this point the roof can be added so that subsequent work can be completed in relative comfort. As an alternative to a simple flat roof, practically any style of pitched roof can be used to top off the poles and plates. To aid you in your selection, the illustrations in this section show roof profiles of a few truss systems for both single and ganged units. When choosing a roof line, allow for an overhang of between 1' and 2' to help protect the cordwood from excess moisture.

Prefabricated trusses are available commercially, but most designs can be easily fabricated on site with the aid of a jig to assure uniformity. Once the trusses are in place, they can be covered with a variety of materials. A solid sheathing of plywood or wafer board may be used with a covering of rolled roofing or shingles. Or, if you'd like to save the expense of solid sheathing, a lath system covered with shakes, metal or Onduwald can be used.

USE GANG NAILS OR PLYWOOD GUSSETS

KING POST TRUSS

GAMBREL

UNIT 1

UNIT 2

"W" TRUSS

UNIT 1

UNIT 2

GAMBREL WISHED
Dear Cordwood Builder:

This is an updated version of my books & plans list. If you have any questions:
Please call (715-536-3195 or 715-212-2870), email (Flato@aol.com)
or take a gander at www.daycreek.com/flatau and www.cordwoodconstruction.org

Cordwood Construction: Best Practices ebook $20 $25.00
New 2012
259 pictures, diagrams and formulas which take the novice
or experienced builder from house plans to occupancy. Sections include: mortar mixes,
new cordwood builder bios, types of wood, drying wood, shrinkage tables, how
we became mortgage-free, post & beam framing, formulas, insurance, Cordwood
Conference 2005 & 2011, Cob & Cordwood, Paper (and Cellulose) Enhanced Mortar, Permachink,
Building Codes, photo album, bottle ends, step by step: how-to “mortar-up” a cordwood wall, tuck
pointing, using mixers, weight of a cordwood wall, Cordwood Education Center, Cordwood
Conference 2011, White Earth Cordwood Home, and much more. 196 pages by Richard Flatau

Special: *Cordwood Construction: Best Practices*+ *House Plans*

House Plans for Flatau’s Chateau 1,624 sq.ft. Home $10.00
7 pages of plans include room dimensions, wiring, solar room (adds 400 sq.ft.)
deach, Room-in-the-attic trusses, slab, window & post placement, special foundation
details. These are detailed house plans on 11” x17” paper, drawn
by draftsman Rob Pichelman.

Cordwood Shed Plans Full Color $10.00
Post & Plate structure, gravel foundation, built for
$1.00 a square foot, king-post trusses, ingenious
ladder pad foundation. Build this first. 26 pages
This is a great way to learn the cordwood masonry
 technique and work out any mistakes. By Richard Flatau.

Cordwood Building: State of the Art
(by Rob Roy.) This handsome book is a 240 page volume, with contributions
from 25 different authors. It contains 8 pages of color pictures and
contains a wealth of valuable information about building a cordwood structure.
It is a thorough and knowledgeable explanation of this earth friendly technique.

Cordwood Cabin: Best Practices June 2009 $15.00
This all color book details the building of the Cordwood Education Center in
Merrill, Wisconsin. The building was designed to be green, use renewable
resources and model best practices with cordwood construction. It also explains how
a similar project can be implemented with groups. R & B Flatau

Cordwood Conference Papers 2005 or 2011 $28.00
27 interesting articles from the Cordwood Conference 2005 in Merrill, WI
40 color photos, R-value testing from the U of Manitoba, Balewood,
Cordwood Dorm Room, Paper Enhanced Mortar, Log Prep & Foam Insulation,
Cordwood Siding, Engineer Built Cordwood, Recycling, Cordwood on a basement,
Frost Protected Shallow foundations, Bright and Airy & Pattern Language Cordwood, and much, much more. A wonderful volume of facts, photos and inspiration.

Cordwood Conference Papers 2005 or 2011 CD or ebook
$20.00

Cordwood and the Code: A Building Permit Guide + CD
ebook
$20.00

The first document ever published that deals specifically with Code Compliance Issues. Included is 2005 R-value testing, Fire Resistance testing, certified Compression tests, REScheck software explained, Building Permit samples & suggestions, A Sample successful Building Permit Application Document, website and a CD of a sample building permit document that you can cut, paste and modify to present to your code officials.

1. **Cordwood Construction: Best Practices 2012**
$25.00

2. **Cordwood Construction: Best Practices CD or ebook**
$20.00

3. **Special**: **Cordwood Construction: Best Practices + House Plans**
$27.00

4. **House Plans for Flatau’s Chateau 1,624 sq.ft. home**
$10.00

5. **Plans for Cordwood Sheds**
$10.00

6. **Cordwood Building: State of the Art**
$27.00

7. **Cordwood Cabin: Best Practices 2009**
$15.00

8. **Cordwood Conference Papers 2005 or 2011 CD**
$20.00

9. **Cordwood and the Code: A Building Permit Guide**
$26.00

Cordwood ebooks available upon request at www.daycreek.com/flatau or Flato@aol.com

Sub Total: ____________

Add $4.00 postage (per book) for US orders (media mail) (Maximum $12 postage)
Add $5.00 postage for Priority Mail (Total)
Add $4.00 PER BOOK ($2 for CD’s) for Canadian orders
Total: ____________

Make checks payable in US Funds to: Richard Flatau

Mail to:
Richard Flatau
www.cordwoodconstruction.org
W4837 Schulz Spur Dr.
www.daycreek.com
Merrill, WI 54452
715-536-3195
Flato@aol.com

Ship to:

Name: __
Address: __
City, State, Zip__

Contact information for order: e-mail: ____________________ Phone: ____________